

Voluntary Medical Male Circumcision Summary of Devices Costing and Modeling Studies

Emmanuel Njeuhmeli, MD, MPH, MBA

Sr. Biomedical Prevention Advisor
Office of HIV/AIDS
USAID Washington

6 studies published and unpublished so far

- 1. Obiero W, Young MR, Bailey RC. The PrePex Device Is Unlikely to Achieve Cost-Savings Compared to the Forceps-Guided Method in Male Circumcision Programs in Sub-Saharan Africa. *PloS one.* 2013;8(1):e53380.
- 2. Duffy K, Galukande M, Wooding N, Dea M, Coutinho A. Reach and Cost-Effectiveness of the PrePex Device for Safe Male Circumcision in Uganda. *PloS one*. 2013;8(5):e63134.
- 3. V Mutabazi et al. Prepex costing study in Rwanda
- 4. Schütte, C, 2012. Cost-efficiency analysis in the context of the Zimbabwe PrePex male circumcision device study. **Unpublished**, UNFPA and Ministry of Health and Child Welfare, Zimbabwe.
- 5. E Njeuhmeli, K.Kripke, K Hatzold, J Reed, D Edgil, J Jaramillo, D Castor, S Forsythe, S Xaba, O Mugurungi, *Cost Analysis of Integrating The PrePexTM Medical Device Into a Voluntary Medical Male Circumcision Program in Zimbabwe*. Submitted for Peer Review Publication.
- 6. Bratt JH, Zyambo Z. Comparing Direct Costs of Facility-Based Shang Ring Provision Versus a Standard Surgical Technique for Voluntary Medical Male Circumcision in Zambia. *JAIDS Journal of Acquired Immune Deficiency Syndromes*. 2013;63(3):e109-e112 110.1097/QAI.1090b1013e31828e39526.

Obiero W, Young MR, Bailey RC. The PrePex Device Is Unlikely to Achieve Cost-Savings Compared to the Forceps-Guided Method in Male Circumcision PEPFAR Programs in Sub-Saharan Africa. PloS one. 2013;8(1):e53380.

- Did not include device cost, supply chain, waste disposal
- Concluded that the PrePex device is unlikely to result in significant cost-savings in comparison to the forceps-guided method and personnel is largest proportion of costs for both methods

	Forceps-guided	PrePex
Device cost	\$0.00	\$0.00
Consumables	\$9.35	\$5.32
Non-consumable supplies	\$6.71	\$5.45
Clinical personnel	\$10.72	\$8.03
Training	\$0.97	\$0.65
Capital	\$2.57	\$2.52
Maintenance and utilities	\$3.47	\$3.47
Support personnel	\$10.78	\$9.64
Management and supervision	\$10.72	\$10.72
Total	\$55.29	\$45.79

Rwanda PrePex - Mutabazi

- Did not included supply chain costs
- Staff costs based on time per circumcision
- Concluded that PrePex offers cost savings

	Dorsal slit	PrePex
Device	\$0.00	\$20.00
Consumables	\$29.00	\$02.75
Staff	\$4.37	\$0.35
Room & equipment	\$2.80	\$0.80
Training	\$1.30	\$0.25
AEs	\$1.78	\$0.00
Total	\$39.25	\$24.15

Duffy K, Galukande M, Wooding N, Dea M, Coutinho A. Reach and Cost-Effectiveness of the PrePex Device for Safe Male Circumcision in Uganda. PloS one. 2013;8(5):e63134.

- Assumed full site utilization
- 15 surgical MC/day; 24 PrePex MC/day
- Concluded that PrePex has a higher unit cost than surgery
- Concluded that PrePex output (# MCs) 60% higher than surgery

	Sleeve resection	PrePex
Devices	\$0.00	\$20.00
Operator staff	\$7.93	\$4.95
Support staff	\$1.86	\$0.84
Consumables	\$9.15	\$3.06
Reusable sets	\$0.59	\$0.07
Sterilisation	\$1.09	\$0.27
Non staff costs	\$0.82	\$0.59
Overheads and shared costs	\$1.22	\$0.76
Total	\$22.65	\$30.55

Schütte, C, 2012. Cost-efficiency analysis in the context of the Zimbabwe PrePex male circumcision device study. Unpublished, UNFPA and Ministry of Health and Child Welfare, Zimbabwe.

- Staff costs based on time per circumcision
- Concluded that in a static location and similar operational environment the unit cost of PrePex circumcisions is estimated to be lower than forceps-guided circumcisions
- Consumables and staff >90% of unit cost
- Should surgical circumcisions be carried out without disposable kits, the difference in unit costs would reduce significantly

Phase II	Forceps guided	PrePex
Device	\$0.00	\$15.00
Consumable	\$29.66	\$12.92
Non-consumable	\$0.37	\$0.41
Personnel costs	\$22.69	\$16.38
Support personnel	\$0.80	\$.80
Training costs	\$0.27	\$0.18
Capital costs	\$0.48	\$0.30
Total component cost	\$54.26	\$45.99

Phase III	Average
Device	\$15.00
Consumable supplies costs	\$12.11
Non-consumable supplies costs	\$1.01
Personnel costs	\$17.26
Training costs	\$0.11
Indirect costs	
Capital costs	\$0.27
Maintenance and utility costs	\$6.24
Support personnel costs	\$3.41
Management and supervision costs	\$2.19
TOTAL	\$57.60

E Njeuhmeli, K.Kripke, et al., Cost Analysis of Integrating The PrePexTM Medical Device Into a Voluntary Medical Male Circumcision Program in Zimbabwe. Submitted for Peer Review Publication.

- Costs for site rather than allocated to PrePex or surgery
- Staff costs based on actual (not theoretical) circumcisions per day
- Concluded that VMMC costs for routine surgery and mixed study sites were similar
- Consumables and staff contributed 80% to the unit cost
- Low service utilization was projected to result in the greatest increases in unit cost

Cost category	Routine Surgery Only Site	Surgery & PrePex Research Site
Staff	\$14.90	\$17.83
Training	\$0.30	\$0.58
Consumables	\$30.36	\$27.62
Device	\$0.00	\$3.25
Durable equipment	\$0.55	\$1.42
Supply chain management	\$9.53	\$9.69
Waste management	\$0.19	\$0.19
Total unit cost/circumcision	\$55.83	\$60.58

Bratt JH, Zyambo Z. Comparing Direct Costs of Facility-Based Shang Ring Provision Versus a Standard Surgical Technique for Voluntary Medical Male Circumcision in Zambia. JAIDS Journal of Acquired Immune Deficiency Syndromes. 2013;63(3):e109-e112 110.1097/QAI.1090b1013e31828e39526.

- Variable costs only
- Used salary of 2 clinical officers/MC procedure based on average recorded time for each type of procedure
- Concluded that costs similar for 2 types of procedures
- Cost of clinician time higher for dorsal slit; cost for disposable supplies higher for Shang Ring

	Dorsal slit	Shang Ring
Clinician time (2 clinicians)	\$4.30	\$2.37
Device	\$0.00	\$9.00
Disposable medical supplies	\$12.36	\$5.93
Reusable instruments	\$1.01	\$0.91
Total Direct Cost	\$17.67	\$18.21

Research questions

- Incremental cost of introducing new device into existing program
 - No study has looked into this question
 - Being address as part of the Prepex Pilot Introductory Studies in Lesotho, Tanzania, South Africa and Swaziland
- Comparison of device vs. existing conventional methods
 - Costing of Phase II study in Zimbabwe (Schutte et al.)
 - Shang Ring study in Zambia (Bratt et al.)
- Cost of VMMC Program before and after introduction of device
 - Prepex modeling in Zimbabwe (Njeuhmeli et al.)
 - Prepex Pilot Introductory Studies are looking into this question in Lesotho,
 Tanzania, South Africa and Swaziland
- Whether introduction of device will change demand creation (upward or downward)
 - Prepex modeling in Zimbabwe (Njeuhmeli et al.) did a sensitivity analysis to see if the unit cost was sensitive to site utilization

Generalizations/Limitations

- Not possible to generalize any unit costs because:
 - In 5/6 studies, costs only collected in large facilities in urban centers; fixed sites
 - Unit cost significantly underestimated and cannot be used for budget purposes
 - No study included demand creation costs except
 Obiero et al, in Kenya
 - Commodities cost likely to change with volume
 - Staffs and commodities costs are varies by countries
 - Costs of overhead, program management, capital items, and training are based on # of circumcisions and could change with scale

Conclusions

- In 4/6 studies, MC using devices did not result in lower unit costs
- In all studies, staff cost is less with device
- In 5/6 studies, consumables (including device) costs higher with device (if use same device price for all studies)
- Cost is only one component of programmatic decision-making
- MC Unit cost is sensitive to the device price
- The MC Unit cost is highly sensitive to site utilization -maximize utilization of resources
- Cost analyses can help identify opportunities for cost savings
 - Logistics including both commodities and supply chain
 - Demand creation

Acknowledgements

- The costing data compilation was done by Futures Institute under USAID funded Health Policy Project (HPP)
- Walter Obiero, Robert Bailey, Vincent Mutabazi, Carl Schutte, Karin Hatzold, Emmanuel Njeuhmeli, Katharine Kripke for providing data from various studies presented for this summary
- This summary was developed by Katharine Kripke of Futures Institute and Emmanuel Njeuhmeli of USAID
- Jason Reed of OGAC, Renee Ridzon, Anne Thomas of DoD provided key comments for this summary

Thank You!

